Incorporating Non-rigid Registration into Expectation Maximization Algorithm to Segment MR Images

نویسندگان

  • Kilian M. Pohl
  • William M. Wells
  • Alexandre Guimond
  • Kiyoto Kasai
  • Martha Elizabeth Shenton
  • Ron Kikinis
  • W. Eric L. Grimson
  • Simon K. Warfield
چکیده

The paper introduces an algorithm which allows the automatic segmentation of multi channel magnetic resonance images. We extended the Expectation Maximization-Mean Field Approximation Segmenter, to include Local Prior Probability Maps. Thereby our algorithm estimates the bias field in the image while simultaneously assigning voxels to different tissue classes under prior probability maps. The probability maps were aligned to the subject using nonrigid registration. This allowed the parcellation of cortical sub-structures including the superior temporal gyrus. To our knowledge this is the first description of an algorithm capable of automatic cortical parcellation incorporating strong noise reduction and image intensity correction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Viscous Fluid Model for Multimodal Non-rigid Image Registration Using Mutual Information

We propose a multimodal free-form registration algorithm based on maximization of mutual information. The warped image is modeled as a viscous fluid that deforms under the influence of forces derived from the gradient of the mutual information registration criterion. Parzen windowing is used to estimate the joint intensity probability of the images to be matched. The method is evaluated for non...

متن کامل

A method for dynamic subtraction MR imaging of the liver

BACKGROUND Subtraction of Dynamic Contrast-Enhanced 3D Magnetic Resonance (DCE-MR) volumes can result in images that depict and accurately characterize a variety of liver lesions. However, the diagnostic utility of subtraction images depends on the extent of co-registration between non-enhanced and enhanced volumes. Movement of liver structures during acquisition must be corrected prior to subt...

متن کامل

Rigid Point Registration with Expectation Conditional Maximization

This paper addresses the issue of matching rigid 3D object points with 2D image points through point registration based on maximum likelihood principle in computer simulated images. Perspective projection is necessary when transforming 3D coordinate into 2D. The problem then recasts into a missing data framework where unknown correspondences are handled via mixture models. Adopting the Expectat...

متن کامل

Hierarchical segmentation-assisted multimodal registration for MR brain images

Information theory-based metric such as mutual information (MI) is widely used as similarity measurement for multimodal registration. Nevertheless, this metric may lead to matching ambiguity for non-rigid registration. Moreover, maximization of MI alone does not necessarily produce an optimal solution. In this paper, we propose a segmentation-assisted similarity metric based on point-wise mutua...

متن کامل

An Expectation Maximization Approach for Integrated Registration, Segmentation, and Intensity Correction

This paper presents a statistical framework which combines the registration of an atlas with the segmentation of MR images. We use an Expectation Maximization-based algorithm to find a solution within the model, which simultaneously estimates image inhomogeneities, anatomical labelmap, and a mapping from the atlas to the image space. An example of the approach is given for a brain structure-dep...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention

دوره 2488  شماره 

صفحات  -

تاریخ انتشار 2002